-
Alumina Ceramic Components
-
Ceramic Housing
-
Metallized Alumina Ceramics
-
Custom Ceramic Parts
-
Alumina Ceramic Insulator
-
Alumina Ceramic Rings
-
Pressure Sensor Ceramic
-
Advanced Technical Ceramics
-
Advanced Engineering Ceramics
-
Fuse Ceramic
-
Ceramic Connector Blocks
-
Electronic Ceramic Components
-
Magnetron Ceramic
-
Zirconia Ceramic Parts
-
Alumina Ceramic Rods
-
Mr.FarnReply very fast and easy to talk!
-
Mr.JacksonGood service and nice to talk.
99% Alumina Based Pressure Sensor Ceramic Substrate Round Shape

Contact me for free samples and coupons.
Whatsapp:0086 18588475571
Wechat: 0086 18588475571
Skype: sales10@aixton.com
If you have any concern, we provide 24-hour online help.
xProduct Name | Pressure Sensor Ceramic | Material | 99% Aluminum Oxide |
---|---|---|---|
Density | 4.0g/cm3-5.9g/cm3 | Thickness | 0.5mm-6mm |
Working Temperature | -20℃-60℃ | Application | Alumina Ceramic Substrate For Pressure Sensor |
Working Voltage | 3-20V | Force Range | 0-20kg |
Sensitivity | 1.0—4mv/V, Typical Value 2.5±1.0mv/V | ||
Highlight | 99% Pressure Sensor Ceramic,Round Pressure Sensor Ceramic,99% alumina based ceramics |
99% Alumina Pressure Sensor Ceramic / Round Ceramic Substrate
1. Description:
Ceramic pressure sensors offer several benefits, including:
- Greater strength and durability. Compared to their stainless steel counterparts, sensing diaphragms made of ceramic are 10x stronger. This quality results in greater durability and longevity. Ceramic’s superior resistance to abrasion further enhances these characteristics.
- Lower cost. Ceramic diaphragms are less expensive to manufacture than stainless steel ones. This quality, coupled with longer service life, can result in significantly lower equipment costs.
- Better corrosion and chemical resistance. Ceramic is chemically inert and corrosion resistant, making it highly compatible with most process materials.
- Smaller environmental risk. Ceramic sensors do not contain oil, reducing their risk of negatively impacting the surrounding environment due to fluid leaks.
- Higher temperature and pressure operating capacities. Ceramic is capable of withstanding greater pressures and temperatures than stainless steel. It also displays a broader range of sensitivity, with the ability to simultaneously measure low pressure while withstanding high overpressure.
2. Feature Advantages:
1) Good advanced ceramic materials
2) High welding sealing performance
3) High hardness and high density
4) Low thermal conductivity
5) Chemical inertness
6) Good wear resistance
7) High Fracture toughness
8) Good insulation performance
9) High temperature resistance
10) A variety of specifications is available
11) Satisfy various technical requests
12) Lower medium spoilage
13) Stiffness texture
14) Widely apply for automotive ceramic sensor , ceramic heater ,electric heating
3. Material Features / Properties:
Color | White or Ivory | White or Ivory | White or Ivory | |
Density | g/cm 3 | 3.82 | 3.9 | 3.92 |
Hardness | HRA | 83 | 85 | 85 |
Flexural Strength | Mpa (psi*10 3 ) | 375 | 386 | 381 |
4. Technical Parameters:
Technical Parameters of Ceramics | ||||||||
Items | Test Conditions | Unit or Symbol | 99% AL2O3 | 95% AL2O3 | 90% AL2O3 | Zirconia | Steatite | Silicon Carbide |
Volume Density | -- | g/cm3 | ≥3.70 | ≥3.62 | ≥3.40 | ≥5.90 | ≥2.60 | ≥3.08 |
Tightness | -- | Pa·m³/s | ≤1.0×10-11 | ≤1.0×10-11 | ≤1.0×10-11 | - | - | - |
Liquid Permeability | -- | -- | Pass | Pass | Pass | Pass | - | |
Flexural Strength | - | MPa | ≥300 | ≥280 | ≥230 | ≥1100 | ≥120 | ≥400 |
Elastic Modulus | - | GPa | - | ≥280 | ≥250 | ≥220 | - | 400 |
Poisson Ratio | - | - | - | 0.20~0.25 | 0.20~0.25 | - | - | - |
Thermal Shock Resistance | 800℃( Room Temperature) Cycle: 10 times | Pass | Pass | Pass | - | - | - | |
Coefficient of Linear Expansion | 20℃~100℃ | ×10-6 K-1 | - | - | - | ≤8 | - | |
20℃~500℃ | ×10-6 K-1 | 6.5~7.5 | 6.5~7.5 | 6.5~7.5 | 6.5~11.2 | - | - | |
20℃~800℃ | ×10-6 K-1 | 6.5~8.0 | 6.5~8.0 | 6.3~7.3 | - | 4 | ||
20℃~1200℃ | ×10-6 K-1 | - | 7.0~8.5 | - | - | - | - | |
Coefficient of Thermal Conductivity | 20℃ | W/(m·k) | - | - | - | - | - | 90~110 |
1000℃ | ||||||||
Dielectric Constant | 1MHz 20℃ | - | 9.0~10.5 | 9.0~10 | 9.0~10 | - | ≤7.5 | - |
1MHz 50℃ | - | - | 9.0~10 | - | - | - | - | |
10GHz 20℃ | - | 9.0~10.5 | 9.0~10 | 9.0~10 | - | - | - | |
Volume Resistivity | 100℃ | Ω·cm | ≥1.0×1013 | ≥1.0×1013 | ≥1.0×1013 | - | ≥1.0×1012 | - |
300℃ | ≥1.0×1013 | ≥1.0×1010 | ≥1.0×1013 | - | - | - | ||
500℃ | ≥1.0×109 | ≥1.0×108 | -- | - | - | - | ||
Disruptive Strength | D.C | kV/mm | ≥17 | ≥15 | ≥15 | - | ≥20 | - |
Chemical Durability | 1:9HCl | mg/c㎡ | ≤0.7 | ≤7.0 | - | - | - | - |
10%NaOH | mg/c㎡ | ≤0.1 | ≤0.2 | - | -- | - | - | |
Grain Size | - | μm | - | 3~12 | - | - | - | - |
5. Process Flows:
Formulating --- Granulating --- Forming --- Sintering --- Grinding --- Inspecting --- Packing
6. Application Fields:
Ceramic Pressure Sensor is widely used in process control, environmental control, hydraulic and pneumatic equipment, servo valves and transmission, chemical and chemical industry and medical instruments and many other fields.
7. Production Facilities: Prilling Tower , Forming Machine , High Temperature Sintering Kiln
8. Detection Devices:
Electric Performance Tester , Film Thickness Analyzer , Granulometer , Helium Mass Spectrometer Leak Detector , Universal Pull Force Meter
9. Notes:Above information only for reference and please contact with us for more details freely when you have any inquiry!